
High-Gain Observer-Based Identification Scheme for Estimation of
Physical Parameters of Synchronous Generators

Mehran Shakarami, Kasra Esfandiari, Mohammad Amin Shamsi, and Mohammad Bagher Menhaj
The Center of Excellence on Control and Robotics, Electrical Engineering Department,

Amirkabir University of Technology, Tehran, Iran

Email: {mehran.shakarami, k.esfandiari, m.a.shamsi, menhaj}@aut.ac.ir.

Abstract—This paper deals with estimation of states and
physical parameters of synchronous generators which is of great
significance in power system analysis as well as control. To
handle the difficulties associated with the existence of unknown
nonlinearities in generator dynamics, the system dynamics is
firstly transformed into a canonical form using a change of
variables leading to an equivalent system. Then, a robust ob-
servation scheme is proposed using Phasor Measurements Units’
(PMUs’) data along with a combination of the well-known
Genetic Algorithm (GA) and a modified version of high-gain
observers. The physical parameters of synchronous generator are
identified by decomposing the nonlinear function of the system
dynamics into a regression model. This decomposition enables
us to identify the unknown parameters accurately by using the
estimated state variables and Recursive Least Square (RLS) tech-
nique. Finally, the proposed identification scheme is compared
with the well-known Iterative Extended Kalman Filter (IEKF)
technique throughout simulations. The obtained results approve
the theoretical discussions and demonstrate the superiority and
feasibility of the proposed identification methodology.

I. INTRODUCTION

Having access to an accurate model of energy generator

units that feed electrical loads plays a prominent role in

analysis of dynamic performance of power systems as well

as design of stabilizers. In the case of unavailability of such

models, the presented models by IEEE standards, previously

published manuscripts, and manufacturing companies are usu-

ally employed [1], [2]. However, one cannot turn a blind

eye on the fact that these models may deviate from the real

ones. Moreover, most of the parameters of power systems are

time varying due to aging. These uncertainties may lead the

operator of power system to take some conservative measures.

Furthermore, the parameters of controllers, which have been

regulated in the commissioning phase, usually require read-

justments when the accurate model of system is available.

These readjustments can improve the stability and dynamic

performance of power systems, which result in dwindling

the probability of fault occurrences, increasing equipment’s

longevity, and optimizing operation of power system. With

Regard to these facts, it is crystal clear that the estimation of

parameters of synchronous generators, which are well-known

as one of the most important elements of power plants, paves

the way for achieving the aforementioned goals [3].

To identify synchronous generators two general approaches

exist: black-box and white-box identification schemes. In

black-box identification schemes the structure of the system

is assumed to be completely unknown, and the only concern

is to map the input data set to the output data [4], [5]. The main

drawback of these approaches is that no physical parameters

is estimated. On the contrary, white-box schemes utilize the

advantage of knowing the structure of synchronous generators

and try to estimate physical parameters [6], [7].

Supervisory Control and Data Acquisition (SCADA) sys-

tems provide steady, low sampling density, and non-

synchronous information about the network. The measure-

ments offered by SCADA are so infrequent and non-

synchronous for capturing system dynamics. Therefore, basing

control methodologies and monitoring on these information

rarely yield promising and high performance. To overcome

the difficulties associated with SCADA systems, Wide Area

Measurements and Control (WAMAC) systems have been

widely used. These systems use PMUs’ data which enable

us to monitor synchronous power system dynamics on a more

refined time scale [8].

The obtained information from PMUs have attracted a great

deal of attention and a lot of researches have been launched

into employing them together with the Extended Kalman

Filter (EKF) technique. The EKF technique has been utilized

in many researches for parameter and state estimation of

power systems, e.g., dynamic state estimation of synchronous

machine [9], [10], automatic parameter calibration of genera-

tors [11], parameter estimation of interior permanent magnet

synchronous motor [12], and control of synchronous reluc-

tance machines [13]. Although the EKF technique provides

a nice performance, the accuracy of the estimation is hinged

on the initial conditions and the sampling rate of the PMU

measurements [9], [14]. So as to improve the convergence of

the EKF, Iterative EKF (IEKF) technique has been utilized [9].

It has been proven that high-gain observers are among the

best state estimators for unknown canonical nonlinear systems

in the presence of uncertainties. These observers, as has been

demonstrated in [15], are able to provide promising state

estimations by only using the output of system. Since they

do not require a priori knowledge regarding the uncertainties

appeared in the system dynamics, high-gain observers have

been widely utilized to address estimation problems in a great

extent [16], [17].

As motivated earlier, an observer-based approach is pro-

posed for estimation of synchronous generators’ state variables

as well as their physical parameters. The suggested method

utilizes the measurements of PMU together with the GA

to solve an optimization problem for estimating the internal



impedance. Then, a modified version of the high-gain observer

and the RLS algorithm are employed to estimate states and the

remaining unknown parameters. Since the convergence of the

high-gain observers and the RLS algorithm is assured [15],

[18], the proposed method always converge. Furthermore, the

proposed method is compared with the IEKF-based method in

the simulation section, and the obtained results demonstrate

that the proposed approach can estimate the states and param-

eters more precisely with a lower estimation time.

The rest of this paper is organized as follows. Section II

presents the nonlinear dynamics of synchronous generator with

immeasurable states and unknown parameters. The structure

of the proposed identification scheme and the corresponding

identification procedures are illustrated in Section III. Section

IV contains simulations results with comparison studies to

indicate the effectiveness, robustness, and fast convergence of

the proposed scheme. Finally, Section V concludes the paper.

II. DYNAMIC MODEL OF SYNCHRONOUS GENERATORS

The proposed estimation method considers a synchronous

generator as a constant voltage source behind a transient

reactance. The dynamic model can be described as follows

[1]:

dδ

dt
= (ω − ω0)ωB ,

dω

dt
=

1

2H
(Pm − EV

X ′
d

sin(δ − θ)−D(ω − ω0))
(1)

where δ is the rotor angle, ω is the rotor speed, ω0 is the

synchronous speed, ωB is the speed base, H is the inertia

constant, Pm is the mechanical torque, E is the internal

voltage, V is the terminal voltage magnitude, X ′
d is the internal

impedance, θ is the terminal voltage phase angle, and D
is the damping coefficient. Since the mechanical system of

the synchronous generators has slow dynamics, the model

considers the mechanical power constant. Also it assumes that

the impacts of damping windings are vanished and field flux

is constant [9].

Identification Objective: The identification goal is to find

an accurate estimation of the state variables δ and ω, and

unknown physical parameters X ′
d, H , D [19].

In order to perform the estimation, data from a PMU can be

employed. One can determine V , θ, active power P , reactive

power Q, and frequency f by using PMU’s measurements.

The equations of P and Q are as follows:

P =
EV

X ′
d

sin(δ − θ),

Q =
−V 2 + EV cos(δ − θ)

X ′
d

.

(2)

Model (1) is nonlinear and has unknown parameters that

make the estimation process a challenging task. To perform

the estimation, it is required to transform the model dynamic

(1) into normal form. Towards this end, let us use the following

change of variables:

z1 = δ − θ,

z2 = (ω − ω0)ωB

(3)

where z1 and z2 denote the new state variables. Now by using

the preceding equation, one can obtain the normal form of (1)

as follows:

dz1
dt

= z2,

dz2
dt

=
ωB

2H
(u− EV

X ′
d

sin(z1)− D

ωB
z2),

y = z1

(4)

where u = Pm is the input signal and y is the output signal.

III. THE PROPOSED IDENTIFICATION SCHEME

Till now, the dynamic model of synchronous generators in

a canonical form is obtained. In the sequel, by incorporating a

modified version of high-gain observers, RLS technique, and

genetic optimization algorithm, a robust high-gain observer-

based identification scheme is developed for the estimation of

state variables and physical parameters of the generator.

A. Modified High-gain Observer Design

In this subsection, a modified high-gain observer is em-

ployed so as to be able to estimate the required information.

Then, the unknown parameters are estimated accurately by

employing the RLS technique.

As the nonlinear term

f(z, u) =
ωB

2H
(u− EV

X ′
d

sin(z1)− D

ωB
z2)

on the right hand side of (4) consists of unknown parameters,

robust or adaptive techniques should be employed to recon-

struct the states of nonlinear system (4). On the other hand,

it is well-known that high-gain observers provide promising

estimations when employed in observing states of unknown

systems in canonical forms [15], [20]. Therefore, the following

second order high-gain observer can estimate the states of (4).

dẑ1
dt

= ẑ2 +
α1

ε
(y − ŷ),

dẑ2
dt

=
α2

ε2
(y − ŷ),

ŷ = ẑ1

(5)

where α1 and α2 are chosen so that the roots of polynomial

R1(s) = s2 + α1s + α2 have negative real values and ε is a

small positive constant.

Remark 1: Although one can show that system (5) can esti-

mate the states of system (4) precisely, it cannot be guaranteed

that ˙̂z2 will converge to ż2. In another word, two different

signals (ż2 �= ˙̂z2) may have the same intergrals (z2 = ẑ2).

This issue is of a great importance, since the procedure of

estimating the unknown parameters of the generator is based

on accessibility of an accurate estimation of ż2; hence the

proposed identification approach will fail to give promising

estimations if it uses the results of high-gain observer (5).



To overcome the aforementioned problem, let us consider

the following system that has the same input u and output y
as (4) does:

dη1
dt

= η2,

dη2
dt

= η3,

dη3
dt

=
d

dt
f(η, u),

y = η1

(6)

As can be seen η1 = z1, η2 = z2, and η3 = ż2. Now let us

use a modified version of observer (5) as follows:

dη̂1
dt

= η̂2 +
β1

ε
(y − ŷ),

dη̂2
dt

= η̂3 +
β2

ε2
(y − ŷ),

dη̂3
dt

=
β3

ε3
(y − ŷ),

ŷ = η̂1

(7)

where the roots of R2(s) = s3+β1s
2+β2s+β3 have negative

real parts. It can be guaranteed that the estimation error eη =
η− η̂ is equal to zero when ε goes to zero. So as to elucidate

more on this premise, let us subtract (7) from (6) and write

the observation error dynamic eη as follows:

deη1
dt

= −β1

ε
eη1 + eη2,

deη2
dt

= −β2

ε2
eη1 + η3,

deη3
dt

= −β3

ε3
eη1 +

d

dt
f(η, u).

(8)

In the absence of uncertain nonlinear term d
dtf(η, u), the

asymptotic convergence of error eη is achieved by selecting

design parameters βi and ε such that matrix

A =

⎡
⎣ −β1/ε 1 0

−β2

/
ε2 0 1

−β3

/
ε3 0 0

⎤
⎦

is Hurwitz. In the presence of the unknown nonlinear term,

the destructive effects of this term on the observation error

dynamics should be eliminated. To put it in general words,

the transfer function from the unknown nonlinear term to error

dynamics should be equal to zero. This transfer function can

be obtained by performing some basic manipulations on (8),

as follows:

Eη

Ft
=

1

ε3s3 + β1ε2s2 + β2εs+ β3

×
⎡
⎣ ε3

ε3s+ β1ε
2

ε3s2 + β1ε
2s+ β2ε

⎤
⎦

where Ft = L
(

df(η,u)
dt

)
and L(.) denotes the Laplace trans-

form. The preceding equation guarantees that by choosing suf-

ficiently small values for ε, the effects of unknown nonlinear

term on eη will be vanished. Hence, observer (7) is robust

against uncertainties and can provide accurate estimations of

state variables η1,2,3. In another word, limt→∞ eη(t) = 0 as

long as ε → 0.

The estimation of ω, i.e., ω̂, can be calculated by using η̂2,

and η̂3 can also be utilized for estimating H and D. Towards

this end, by using (2), (4), and considering the fact that η̂3 is

an accurate estimation of ż2, one can get:

η̂3 =
ωB

2H
(u− P − D

ωB
η̂2). (9)

From (9), one can see that η̂3 is linear with respect to unknown

coefficients. Therefore, one has:

η̂3 =
[
ωB(u− P ) −η̂2

] ⎡⎣ 1
2H

D
2H

⎤
⎦ . (10)

According to the preceding equation a regression model has

been successfully obtained which enables us to utilize RLS

algorithm and procure estimation of H and D in (10).

B. Rotor Angle Estimation

In order to conclude the proposed identification method-

ology, it is required to estimate the last unkown parameter,

i.e., X ′
d. Moreover, note that the proposed framework employs

δ − θ as the output of (1). On the other hand, the only

available measurements are PMU data; therefore the challenge

of estimating δ should be handled effectively.

To estimate X ′
d, one can utilize (2) and get,

Q =
−V 2 + EV cos

(
sin−1

(
PX′

d

EV

))
X ′

d

. (11)

As can be seen from (11), Q is a nonlinear function of

unknown parameter X ′
d. Hence, one can consider the estima-

tion of X ′
d, X̂ ′

d, as the solution of the following constrained

optimization problem:

argmin
X̂′

d

1

2

(
Q− Q̂

)2

subject to Q̂ =
−V 2 + EV cos

(
sin−1

(
PX̂′

d

EV

))
X̂ ′

d

.

(12)

The optimization problem (12) can be solved using the GA. In

order to improve the estimation, one can introduce the range

of practical values of X ′
d to the GA. Moreover, one can utilize

the measurements of Q on a specific time interval instead of

using it’s measurements at a specific moment. Therefore, the

modified optimization problem is:

argmin
X̂′

d

1

2

(
Q− Q̂

)T (
Q− Q̂

)

subject to Q̂i =
−V 2

i + EVi cos
(
sin−1

(
PiX̂

′
d

EVi

))
X̂ ′

d

X ′
dmin

≤ X̂ ′
d ≤ X ′

dmax
.

(13)



where Q and Q̂ are the vector of measurements of Q and its

estimation as follows:

Q =

⎡
⎢⎢⎢⎣
Q1

Q2

...

Qn

⎤
⎥⎥⎥⎦ , Q̂ =

⎡
⎢⎢⎢⎣
Q̂1

Q̂2

...

Q̂n

⎤
⎥⎥⎥⎦ . (14)

After calculating X̂ ′
d by solving (13), the estimation of δ, δ̂,

can be obtained by using (2) as follows:

δ̂ = sgn

(
PX̂ ′

d

EV

)
cos−1

(
QX̂ ′

d + V 2

EV

)
+ θ. (15)

Note that one can overcome the aforementioned challenge,

by employing the obtained δ̂ and considering y = δ̂−θ as the

input of modified high-gain observer (7).

C. The Proposed Algorithm

As stated in the preceding sections, the aim of this research

is to estimate the states and unknown parameters of syn-

chronous generators. The proposed algorithm that is based on

a modified version of high-gain observers can be summarized

in few steps. This section provides the steps of the proposed

algorithm that one can utilize for implementation.

The following algorithm describes the required steps:

1) The estimation of X ′
d is calculated by solving constrained

optimization problem (13) and using the measurements of

PMU.

2) The estimation of δ can be obtained from (15). In

addition, one can get y by using δ̂, i.e., y = δ̂ − θ.

3) By employing the modified high-gain observer (7), η̂ is

found.

4) In order to find the estimation of H and D, regression

model (10) is used and the parameters is estimated by the

RLS algorithm.

Remark 2: Although the proposed observer can provide a

precise estimation of system states by choosing sufficiently

small design parameter ε, it suffers from picking phenomenon

which is an inherent disadvantage of high-gain observers.

In another word, selecting too small values for ε will yield

much more overshoot/undershoot in the initial moments of

estimations. In the case of observer-based control this inherent

picking phenomenon is of great significance and should be

handled effectively [21]; because this overshoot/undershoot

will be transmitted to the system via controller which may

lead it into instability. However, due to the fact that in the

identification problems, the estimated states are not fed into

a controller, one can choose arbitrarily small values for ε.
Therefore, the value of ε does not have any destructive effects

on the stability of the system.

Remark 3: Although the picking phenomenon of modified

high-gain observer (7) does not have any effects on the stability

of the system, it may cause a tardy convergence of the

estimated physical parameters to the ideal ones. Because, the

estimated states, which plays a prominent role in the conver-

gence of the RLS algorithm, deviate from their actual values

TABLE I: Parameters used in the generator model.

Parameter Value (pu)

ω0 0
ωB 2π × 60
H 6.5
Pm 0.8
E 1.08
V 1.4142
X′

d 0.375
θ 0
D 0.05

0 2 4 6 8 10
0

0.5

1

1.5

2

Time(s)
P

0 2 4 6 8 10
−1.6

−1.5

−1.4

−1.3

−1.2

Time(s)

Q

Fig. 1: Resulting P and G of generator simulation.

significantly in the initial moments. One solution to overcome

this problem is to commence estimating physical parameters

after a delay. Note that this delay can be roughly adjusted

based on the eigenvalues of matrix A which determines the

convergence rate of the proposed observer.

IV. SIMULATION RESULTS

To test the fidelity of the proposed algorithm, this section

provides a comparison between the proposed scheme and

the well-known IEKF-based technique [22]. The IEKF-based

method considers the unknown parameters as follows:

Hk+1 = Hk + ω1,

Dk+1 = Dk + ω2,

X ′
d,k+1 = X ′

d,k + ω3

(16)

where ωi are the noise to represent un-modeled dynamics.

Then (16) is augmented with the discrete form of (1) and the

IEKF is employed to calculate the estimations.

The employed parameters for the simulation are listed in

Table I [23], and P and Q are shown in Fig. 1.
In order to estimate X ′

d, P and Q are utilized together with

the following values as the minimum and maximum possible

values of X̂ ′
d [1].

X ′
dmin

= 0.14, X ′
dmax

= 0.5 (17)
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Fig. 3: Rotor angle δ, rotor speed ω, and their estimations, δ̂
and ω̂.

The computed values of fitness function (13) at each gener-

ation of the GA algorithm are depicted in Fig. 2, and the

obtained estimation of X ′
d is X̂ ′

d = 0.375.

The states of synchronous generator and their estimations

obtained by (15), δ̂, and modified high-gain observer (7), ω̂,

are expressed in Fig. 3.

As can be seen in Fig. 3, there are some peaks in the initial

estimation of ω, which is an inherent disadvantage of high-gain

observers. As mentioned in Remark 3, the estimation process

of the RLS algorithm is intiated after 1 second so as to avoid

the affects of the peaking phenomenon on the estimation of

D and H . The obtained estimation of D, D̂, and H , Ĥ , are

shown in Fig. 4.

The estimated parameters using the IEKF-based method

are depicted in Fig. 5. To summarize the performance of the

simulation methods, the estimated parameters are reported in

Table II.

From Table II, it can be seen that the proposed method

Time(s)
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10
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Ĥ
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0 1 2 3 4 5 6 7 8 9 10

-0.05

0
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0.1
D

D̂

2 3
6.5000

6.5
6.5000

2 3
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0.05

Fig. 4: Inertia constant H , damping coefficient D, and their

estimations, Ĥ and D̂.
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′
dIEKF

1600 1800
0.3750
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Fig. 5: Inertia constant H , damping coefficient D, internal

impedance X ′
d, and their IEKF estimations, ĤIEKF , D̂IEKF ,

and X̂ ′
dIEKF

.

TABLE II: Physical parameters and their estimations.

Parameter Estimated Value

H=6.5
Ĥ = 6.5

ĤIEKF = 6.2824

D=0.05
D̂ = 0.04955

D̂IEKF = 0.0521

X′
d=0.375

X̂′
d = 0.375

X̂′
dIEKF

= 0.375



can estimate the parameters more accurately. Furthermore, by

comparing Fig. 4 and Fig. 5, one can observe that the proposed

approach converges in a shorter time than the IEKF-based

method does.

V. CONCLUSIONS

This paper illustrated a systematic technique for state and

parameter estimation of synchronous generators using PMU

data. The well-known genetic optimization technique was em-

ployed to obtain an approximation of unknown parameter X ′
d.

Subsequently, a modified version of high-gain observers was

utilized to reconstruct precisely the system states as well as to

remove destructive effects of uncertainties. The RLS technique

was later employed to estimate other physical parameters,

i.e., H , D. The comparisons between the traditional schemes

and the proposed one have been also presented throughout

simulations. The simulation results demonstrated that the

proposed methodology not only yields a smaller observation

and identification errors, but also converges so rapidly, which

are in commensurate with theoritical discussions.
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